Jei tai kas nors yra, būtent to Gian Giudice ir laukė visą savo kaip mokslininko gyvenimą. „Kalbame ne apie įsitvirtinusios teorijos patvirtinimą, bet apie durų atvėrimą į nežinomą ir netyrinėtą pasaulį,“ – sako Giudice, dalelių teorinis fizikas iš CERN šalia Ženevos, Šveicarijoje.

Kol kas regime tik užuominas dalelių susidūrimų nuolaužose, atsirandančias CERN garsiajame dalelių greitintuve Large Hadron Collider. Bet jei šios užuominos per artimiausias savaites ir mėnesius pasitvirtins, tai gali būti labai svarbu. Pamirškite Higgsą, pamirškite netgi gravitacines bangas: 2016–ieji gali tapti metais, kai buvo atskleistas naujas fundamentalaus gamtos veikimo paveikslas.

Ši viltis kyla iš dviejų „spuogelių“, įvykusių ir matomų nepriklausomai, toje pačioje vietoje, naujausiuose LHC dviejų didelių detektorių, ATLAS ir CMS, duomenyse. Jie potencialiai nurodo į dalelę, prieš kurią nublanksta net Higgso bozonas – CERN 2012 m. liepą atrasta masę suteikianti dalelė.

Higgsas buvo svarbus ženklas, bet visgi tai buvo kelio pabaigą žymintis riboženklis. Tai buvo paskutinioji dalelė, kurią numato Standartinis modelis (SM). Šis sudėtingų formulių rinkinys itin tiksliai atitiko visus ligšiolinius eksperimentų rezultatus, ir paaiškina trijų fundamentaliųjų gamtos jėgų veikimą – elektromagnetizmo, stipriosios ir silpnosios branduolinės sąveikos. Tačiau tai aiškiai nevisapusiškas modelis, neužsimenantis apie ketvirtąją gravitacinę sąveiką ir negalintis paaiškinti, kodėl Higgso ir dar apie 16 dalelių, iš kurių jis sudarytas, savybės yra būtent tokios, kokios yra – nekalbant jau apie sandarą nematomos tamsiosios materijos, kuri, manoma, dominuoja visatoje.

Norint išsivaduoti iš SM, reikia rasi kažką visiškai naujo.

Tad suprantamas susijaudinimas, supantis užuominas apie pirmų metų LHC rezultatus, kai greitintuvas veikė maksimalia energija. Teoretikas John Ellis iš King's College London sako, kad jam neteko matyti nieko panašaus nuo pat nelaimingojo 2011 m. italų fizikų pranešimo apie greičiau už šviesą sklindančius neutrinus, kai paaiškėjo, kad tai tebuvo šviesos žaismas. Esą neteisingai prijungtas optinio pluošto kabelis iškreipė eksperimento laiką. Vargu, ar tokia klaida gali pasitaikyti šiuo atveju.

Milijardus kartų per sekundę vykstančių protonų susidūrimų nuolaužų sijojimas, siekiant aptikti ką neįprasto, – sudėtinga ir purvina užduotis. Pakankamai ilgai ir įdėmiai žiūrint, galima išvysti tai, ko ieškai, tačiau įsitikinti rezultatu galima tik daug kartų stebint tą patį dalyką.

Jei tris kartu išmetus monetą, tris kartus iškrenta herbas, tikriausiai palaikytumėte tai atsitiktinumu. Tačiau jei herbas iškristų penkis kartus iš eilės, tikriausiai imtumėte įtarti, kad moneta yra netikra. Dalelių fizikos atradimo paskelbimo „aukso standartas“ reikalauja, kad atsitiktinumo tikimybė būtų vos 1 iš 3,5 milijonų – tokį užtikrintumas atitinka herbo iškritimą tarp 21 ir 22 monetos metimų iš eilės.

Su naujaisiais LHC „spuogeliais“ tokio užtikrintumo dar nepavyko pasiekti. Jie buvo aptikti susidūrimuose, sukūrusiuose du didelės energijos šviesos fotonus. Tokie susidūrimai šiaip ja turėtų sukurti mažiau itin didelės energijos fotonų, vien jau todėl, kad jų sukūrimui reikia daugiau energijos. Energijai didėjant, ATLAS ir CMS aptinkama mažiau „foninių“ įvykių, kylančių iš kitų gerai ištyrinėtų procesų, kuriuose sukuriami du fotonai.

Bet 750 gigaelektronvoltų (GeV) energijos, padalintos dviem fotonams, lygyje, detektoriai fiksuoja nedidelį pakilimą.

Tai yra užuomina. Dalelės turi mases, ir joms yrant, ši masė virsta skilimo produktų mase ir energija. Fotonų, kurių bendra energija siekia 750 GeV perteklius rodo, kad jie kilo iš dar nežinomos dalelės, kurios masė atitinka tokią energiją.

Skilimai į į du fotonus yra labai „švarūs“ procesai – fotonus aptikti lengviau, nei kitas daleles, ir tikėtinas foninių įvykių dažnis gerai žinomas. Panašus iškilimas grafike prie 125 GeV buvo pirmoji Higgso bozono egzistavimo užuomina. Šis naujausias iškilimas rodytų kol kas sunkiausią atrastą dalelę, kurios masė šešis kartus viršytų higzono masę ir beveik keturis kartus – švino atomo.

Šis signalas keistai panašus į Higgso bozonų paliktus iškilimus, kurių atardimas po pusmečio buvo patvirtintas. Tiksliai apskaičiuoti praktiškai neįmanoma, bet sudėjus ATLAS ir CMS naujausius rezultatus, paskelbtus gruodį, tikimybė, kad iškilimai tėra statistinė fluktuacija, yra viena iš kelių šimtų. Tai atitinka 9 ar 10 herbo atsivertimų iš eilės, – tiek pakanka, kad kiltų įtarimų dėl monetos tikrumo, tačiau nepakanka užtikrinimui.

Tačiau ši vilties kibirkštėlė uždegė dagtį. Vos savaitei praėjus po to, kai ATLAS ir CMS aptiktų iškilimų paviešinimo, fizikos teoretikai arXiv serveryje, kur fizikai skelbia duomenis prieš formalias publikacijas, paskelbė daugiau nei 100 galimų paaiškinimų, ir jų sparčiai daugėja.

Yasunori Nomura iš Kalifornijos universiteto, Berkeley, buvo vienas iš pirmųjų. „Paprastai tokios anomalijos nedomina, nes dauguma jų būna pernelyg neaiškios, tačiau ši yra palyginti „švari“, – sako jis. „Mus kamuoja tam tikro lygio desperacija, nes turime išspręsti daug problemų ir neturime duomenų.“

Ar tai gali būti penktoji jėga?

Yra keletas dalykų, kuriuos galime pasakyti apie numanomą dalelę. Visų pirma, ji neturi elektrinio krūvio, ir jos sukinys – kvantų mechanikos savybė – yra apribotas. Pagal sukinių matematiką, bet kuri dalelė, skylanti į du fotonus, kurių sukinys yra 1, pati tokio sukinio – 1 – turėti negali. Be to, jos sukinys privalo būti sveikasis skaičius. Taigi, dalelė gali turėti sukinį 2, kas kai kuriems fizikams keltų idėją, kad tai yra tam tikras gravitonas – hipotetinė 2 sukinio dalelė, perduodanti gravitaciją. Tai būtų ilgai lauktas pirmasis pasireiškimas teorijos už SM ribų, apjungiančios gravitaciją su kitomis žinomomis sąveikomis.

Arba gali būti, kad dalelės sukinys yra 0, kaip kad Higgso dalelės – tiesą sakant, pagal kitą teoriją, čia apsireiškė sunkesnysis Higgso bozono pusbrolis. Bet jeigu šios numanomos dalelės sukinys 0, Nomura'os analizė rodo, kad tai nėra elementarioji dalelė: jei taip būtų, kvantų teorijos keistenybės lemtų, kad aplink ją iš vakuumo rastųsi kitų trumpaamžių elementariųjų dalelių tuntai, išpūsdami jos masę daug labiau, nei dabar.

Nomura mano, kad tai turi būti sudėtinė dalelė, panaši į protonus ir neutronus atomo branduolyje. Jie sudaryti iš kvarkų, surištų stipriąja branduoline sąveika. Antra vertus, paslaptingoji dalelė būtų pirmoji narė šeimos, kurią sieja visiškai nauja penktoji sąveika, pasireiškianti tik aukštose energijose.

Tai gali atrodyti kaip nevykusios spėlionės, bet tai būtų tiesiog istorijos pasikartojimas. XX amžiaus šeštame ir septintame dešimtmetyje, daugybės dalelių sudarytų iš kvarkų, atardimas paskatino fizikus išplėtoti stipriosios sąveikos idėją. Nomura sako, kad drauge su tyrėju postdoktorantu atliko kelis šios idėjos patikrinimus – ir ji visus juos išlaikė.

Kiti fizikos teoretikai tą patį sako apie savo mėgiamas teorijas, ir Ellis įspėja – atsižvelgiant į mūsų (ne)žinojimo lygį, dalelė vis dar gali būti tiek elementari, tiek ir sudėtinė. „Negali daug ko atmesti. Dalelės sukinys irgi tebėra atviras klausimas.“

Keista, bet vienas dalykas, kurį atmesti veikiausiai galime, yra tai, ką daugelis teoretikų, taip pat ir Ellis, norėtų išvysti: supersimetrijos dalelė. Supersimetrija yra teorija, užtaisanti daugelį standartinio modelio skylių, pasitelkdama guotą sunkesnių dalelių, atitinkančių visas jau žinomas. LHC iš esmės nepavyko pateikti kokių nors supersimetrijos įrodymų, ir netgi ši kruopelė žinių apie šią spėjamą naująją dalelę, neatitinka paties paprasčiausio supersimetrijos modelio.

Dar viena keistenybė yra tai, kad tokia masyvi dalelė į du fotonus turėtų skilti tik netiesiogiai, per daleles, kurių masė būtų bent jau perpus mažesnė – bet nėra jokių jų ženklų. „Jei šis dalykas realus, tada jis negali būti tiesiog vienas pats. Reikia, kad egzistuotų kitos naujos dalelės,“ – sako Ellis.

Tai, kad nėra parengto modelio, kaip, tarkime, supersimetrija, pateikiančio daleles su tinkamomis savybėmis, dar labiau intriguoja Giudice. „Tai labiausiai jaudinanti istorijos dalis“, – sako jis. Jo nuojauta dera su Nomura'os – kad ši dalelė rodo esant visą pulką tokių dalelių, sąveikaujančių penktąja, dar nežinoma, fundamentaliąja sąveika. Jeigu taip, ATLAS ir CMS kaupiant duomenis, turėtume išvysti dar daugiau tokių dalykų su dar didesnėmis masėmis.

Netikėtumai gali laukti ne tik čia. Atskirame tyrime, LHC eksperimente, irgi fiksuojamos anomalijos, galinčios rodyti dar nežinomų dalelių egzistavimą – tačiau kur jos galėtų derėti platesniame paveiksle, tebėra neaišku (žr. „Milžino šešėlis“).

Gauti daugiau duomenų – svarbiausia tokių eksperimentuotojų, kaip Jim Olsen iš CMS užduotis. Nors ir stengdamasis išlaikyti šaltą protą, jis susijuodinęs ne menkiau, nei jo kolegos teoretikai. Jei LHC atnaujinus aukštos energijos dalelių susidūrimus, ATLAS ir CMS užfiksuoti iškilimai padidės, tada tai bus „itin svarbu“, pabrėžia jis. „Tai yra visiškai naujas tyrimų objektas ir pirmasis dalykas už standartinio modelio ribų.“

O gal tokios viltys bus sužlugdytos, kaip jau ne kartą yra nutikę. Pastarąjį kartą, 2014 metais, CMS ir ATLAS užfiksavo viliojančius žybsnius mažesnės energijos susidūrimų, sukuriančių dalelių srautus, duomenyse. Jie buvo galimos dalelės, turinčios apie 2 000 GeV masę, užuomina, ir jos reikšmingumas buvo maždaug toks, kaip ir naujojo iškilimo.

Teoretikai tada tradiciškai pažėrė paaiškinimus – iš kurių populiariausias apie naują sąveiką pernešančią dalelę, – tačiau 2015 metais išanalizavus duomenis, šis užfiksuotas grafiko iškilimas pavirto į nieką, netgi pasirodžius naujausiam iškilimui.

„Gali būti, kad čia, kaip visad, statistika žaidžia su mumis, tad verčiau palauksiu, kol ateis duomenys,“ – sako Patrickas Janotas iš CMS. „Fizikai LHC duomenyse ieško tiek daug visko, kad būtų nenormalu, jei nerastų kelių tokio masto ekscesų.“ Tą patį pabrėžia Marumi Kado iš ATLAS. „Jau dabar daugybė analizių ieško daugybės žymenų, kas didina foninės fluktuacijos tikimybę,“ – apsidraudžia jis.

Kaip yra iš tiesų, paaiškėti gali jau labai greitai. 2015 metais LHC nepateikė tiek duomenų, kiek tikėtasi, ir daleles per CMS detektorius nukreipiančių milžiniškų magnetų problemos reiškė, kad ne visi jie tokie naudingi, kokie galėtų būti. Jei tyrėjams nuo tada pavyko kompensuoti trūkstamą magnetą duomenų analizėje, daugiau paaiškėti gali CERN fizikams susirinkus į žiemos konferenciją Italijos Alpėse, kuri prasidės kitą savaitę. Jei ne, teks laukti lig vasaros, kai bus prieinami pirmieji duomenys iš dalelių susidūrimų, pradėtų balandį.

Dalelių fizikai viliasi, kad 2016-ieji grąžins į neprilygstamą septintojo dešimtmečio jaudulį, kai mūsų supratimą apie materijos sandarą supurtė kvarkų ir stipriosios branduolinės sąveikos atradimas. Tačiau visų pirma jų laukia sunki faktų ir pagundos atrasti kažką naujo, balansavimo užduotis. Kai susiduriate su pažįstamu dideliame mieste, tikriausiai stebitės sutapimu, pamiršdami 99 kartus, kai su juo nesusidūrėte, sako LHCb fizikas Ulrik Egede iš Imperial College London. Mūsų protai pasirengę ieškoti reiškinio priežasčių, netgi tada, kai jų gali ir nebūti. „Bet tuo pačiu reikia dėl to jaudintis, nes be jaudulio moksle nieko pasiekti negalima.“